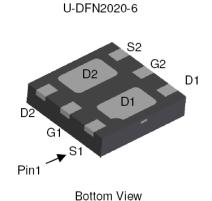


P-Channel Enhancement Mode Field Effect Transistor


• Features

High density Cell Design for Low R_{DS(ON)} Voltage controlled small signal switch Reliable and Rugged

• Pin Configurations

General Description

These P-Channel enhancement mode field effect transistors are produced using high cell density, DMOS technology.

Top View 6 5 4 D1 G2 S2 D2 D2 D2 S1 G1 D2 D2 1 2 3

DFN2020-6

Absolute Maximum Ratings

 $@T_A=25^{\circ}C$ unless otherwise noted

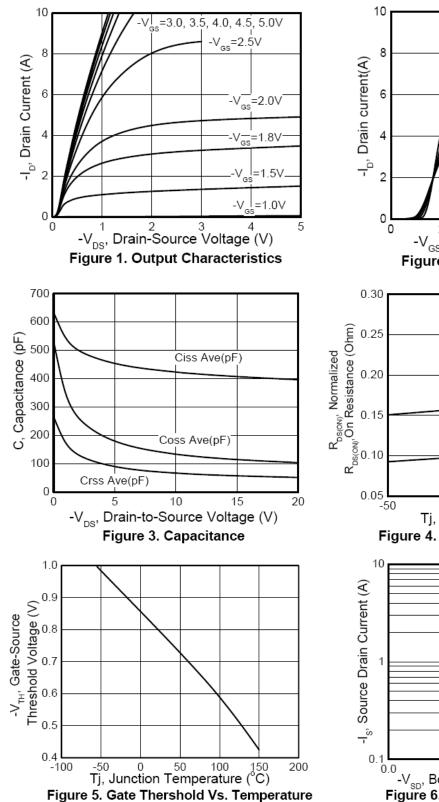
Parameter	Symbol	Ratings	Unit
Drain - Source Voltage	V _{DSS}	-20	V
Gate –Source Voltage	V _{GS}	±8	V
Drain Current (Continuous)	ID	-2.8	A
Drain Current (Pulse)	I _{DP}	-10	A
Power Dissipation	P _D	1.25	W
Operating Temperature	TJ	-55~150	°C
Storage Temperature	T _{STG}	-55~150	°C

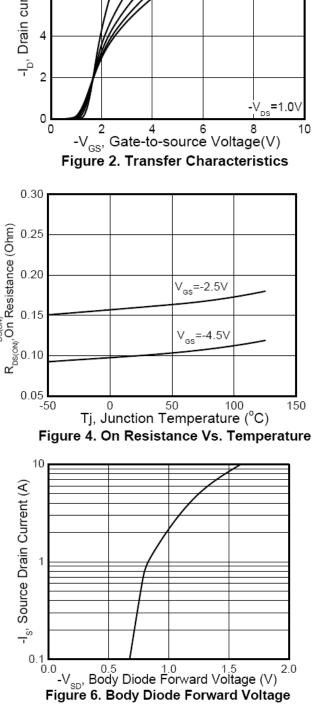
• Electrical Characteristics @T_A=25°C unless otherwise noted

Parameter	Symbol	Conditions	Min	Тур	Max	Unit		
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0V, I_{D} = -250uA$	-20			V		
Drain Cut-off Current	I _{DSS}	V_{DS} = -20 V , V_{GS} = 0V			-1	uA		
Gate-Source Leakage Current	I _{GSS}	$V_{GS} = \pm 8 V$, $V_{DS} = 0 V$			±110	nA		
	ON	I CHARACTERISTICS						
Gate Threshold Voltage	V _{GS(th)}	I_D = -250 uA , V_{DS} = V_{GS}	-0.45		-1.5	V		
Drain-Source On-state Resistance	R _{DS(on)}	$I_{\rm D}$ =-2.8 A , $V_{\rm GS}$ = -4.5V			73	mΩ		
		$I_D = -2A$, $V_{GS} = -2.5V$			116	mΩ		
Forward Transconductance	g fs	V _{DS} = -5V, I _D = -2.8A		6.5		S		
On-State Drain Current ¹	ID _(on)	$V_{DS} = -5V, V_{GS} = -4.5V$	-6			A		
		$V_{DS} = -5V, V_{GS} = -2.5V$	-3					
	DYNA	MIC CHARACTERISTICS						
Input Capacitance	C _{iss}	$V_{DS} = -6V$, $V_{GS} = 0V$ f = 1 MHz		415		pF		
Output Capacitance	Coss			223		pF		
Feedback Capacitance	C _{rss}			87		pF		
SWITCHING CHARACTERISTICS								
Turn-on Delay Time	t _{d (on)}	V_{DD} = -6V , R_L = 6 Ω , I_D = -1.0A,		13	25	ns		
Turn-off Delay Time	t _{d(off)}	V_{GEN} = -4.5V, R_{G} = 6 Ω		42	70	ns		
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS								
Drain-Source Diode Forward Current	Is				-0.75	А		
Drain-Source Diode Forward Voltage	V _{SD}	Is = -1.6A, V _{GS} = 0V	-0.5		-1.2	V		

Notes:

2. For design AID only, not subject to production testing. Switching time is essentially independent of operating temperature.

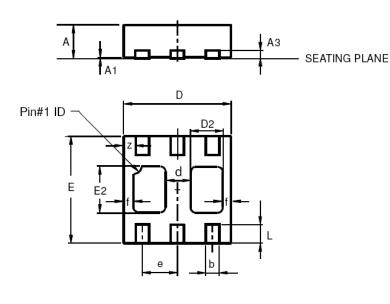



85°C 125°C 150°C

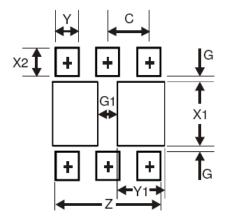
25°C

-55°C

• Typical Performance Characteristics



Vs. Source Current



 Package Information DFN2020-6

U-DFN2020-6						
Type B						
Dim	Min	Max	Тур			
Α	0.545	0.605	0.575			
A1	0	0.05	0.02			
A3		_	0.13			
b	0.20	0.30	0.25			
D	1.95	2.075	2.00			
d		_	0.45			
D2	0.50	0.70	0.60			
е			0.65			
Е	1.95	2.075	2.00			
E2	0.90	1.10	1.00			
f			0.15			
L	0.25	0.35	0.30			
z			0.225			
All Dimensions in mm						

Dimensions	Value (in mm)
Z	1.67
G	0.20
G1	0.40
X1	1.0
X2	0.45
Y	0.37
Y1	0.70
С	0.65

IMPORTANT NOTICE

The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. FORSEMI assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any update. FORSEMI reserves the right to make changes, at any time, in order to improve reliability, function or design and to attempt to supply the best product possible.