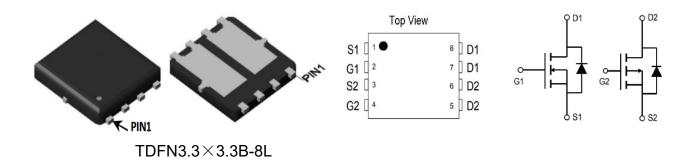


N-Channel 30-V (D-S) MOSFET


• FEATURES

$$\begin{split} &\text{RDS(ON)} { \leq } 9.1 m \Omega @ \text{VGS} { = 10 \text{V} } \\ &\text{RDS(ON)} { \leq } 13.5 m \Omega @ \text{VGS} { = } 4.5 \text{V} \\ &\text{high density cell design for extremely low RDS(ON)} \\ &\text{Exceptional on-resistance and maximum DC current} \\ &\text{capability} \end{split}$$

GENERAL DESCRIPTION

The FS4486 combines advanced trench MOSFET technology with a low resistance package to provide extremely low RDS(ON). This device is ideal for load switch and battery protection applications.

PIN CONFIGURATION

• Absolute Maximum Ratings (TA=25°C Unless Otherwise Noted)

Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		VDSS	30	V	
Gate-Source Voltage		VGSS	±20	V	
Continuous Drain Current(TJ	TA=25 ℃	– ID	30	- A	
=150℃)*	TA=70℃		23.5		
Pulsed Drain Current		IDM	120	A	
Maximum Power Dissipation*	TA=25 ℃	- PD	3.1	w	
	TA=70℃		2.0	V	
Operating Junction Temperature		TJ	-55 to 150	°C	
Thermal Resistance-Junction to Ambient*		RθJA	50	°C/W	
Thermal Resistance-Junction to Lead*		RθJL	24		

* The device mounted on $1in_2 FR4$ board with 2 oz copper

• Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Limit	Min	Тур	Max	Unit	
STATIC							
BVDSS	Drain-Source Breakdown Voltage	VGS=0V, ID=250µA	30			V	
VGS(th)	Gate Threshold Voltage	VDS=VGS, ID=250µA	1.55		2.7	V	
IGSS	Gate Leakage Current	VDS=0V, VGS=±20V			±100	nA	
IDSS	Zero Gate Voltage Drain Current	VDS=30V, VGS=0V			1	μA	
RDS(ON)	Drain-Source On-State	VGS=10V, ID= 10A	7.9 9.1		mΩ		
	Resistance a	VGS=4.5V, ID= 7.5A		9.7	13.5	11122	
VSD	Diode Forward Voltage	IS=2.7A, VGS=0V		0.72	1.1	V	
DYNAMIC		1	•		•	I	
Qg	Total Gate Charge(10V)	VDS=15V, VGS=10V, ID=17A		55		- nC	
Qg	Total Gate Charge(4.5V)			29			
Qgs	Gate-Source Charge	VDS=15V, VGS=4.5V, ID=17A		10			
Qgd	Gate-Drain Charge			15			
Ciss	Input capacitance			3200		pF	
Coss	Output Capacitance	VDS=15V, VGS=0V, f=1.0MHz		550			
Crss	Reverse Transfer Capacitance			210			
Rg	Gate-Resistance	VDS=0V, VGS=0V, f=1MHz		1.2		Ω	
td(on)	Turn-On Delay Time			23		ns	
tr	Turn-On Rise Time	VDD=15V, RL =15 Ω		12			
td(off)	Turn-Off Delay Time	- ID=1A, VGEN=10V RG=6Ω		86			
tf	Turn-Off Fall Time]		12			

Note:

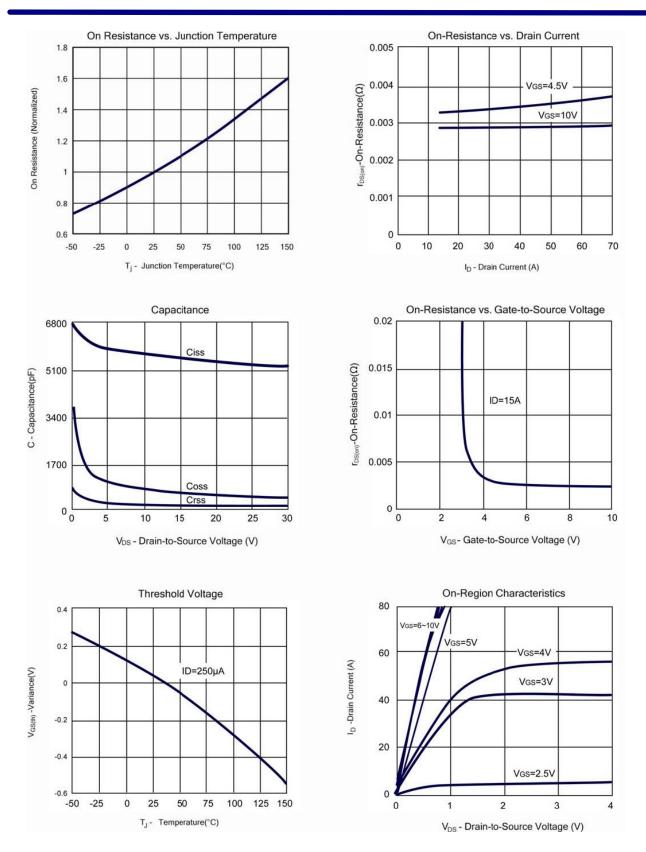
A. The value of RqJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25° C. The Power dissipation PDSM is based on R qJA t≤ 10s and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design.

B. The power dissipation PD is based on TJ(MAX)=150° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Single pulse width limited by junction temperature TJ(MAX)=150 $^\circ\,$ C.

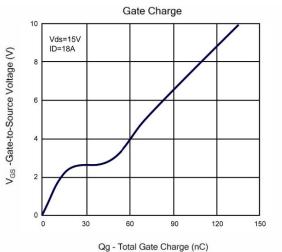
D. The RqJA is the sum of the thermal impedance from junction to case RqJC and case to ambient.

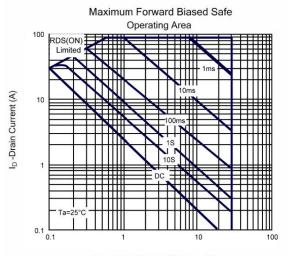
E. The static characteristics in Figures 1 to 6 are obtained using <300ms pulses, duty cycle 0.5% max.

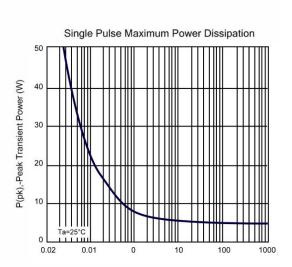

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=150° C. The SOA curve provides a single pulse rating.

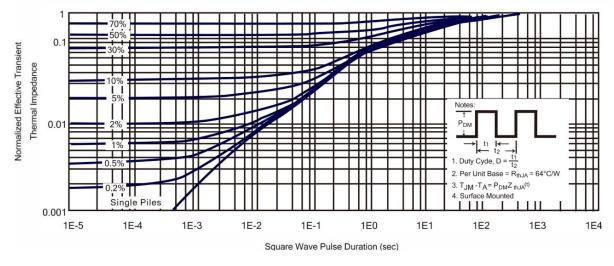
G. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25° C.



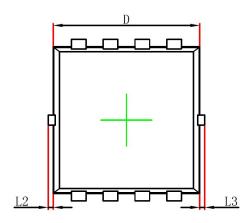



TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

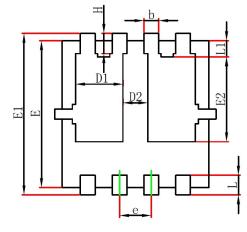

V_{DS} -Drain-Source Voltage (V)

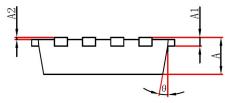
Body-diode characteristics

Normalized Thermal Transient Impedance, Junction-to-Ambient



4 / 5 www.forsemi.com




• PACKAGE TDFN3.3×3.3B-8L

Top View

Bottom View

Side View

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min.	Max.	Min.	Max.	
A	0.650	0.850	0.026	0.033	
A1	0.152 REF.		0.006 REF.		
A2	0~0.05		0~0.002		
D	2.900	3.100	0.114	0.122	
D1	0.935	1.135	0.037	0.045	
D2	0.280	0.480	0.011	0.019	
E	2.900	3.100	0.114	0.122	
E1	3.150	3.450	0.124	0.136	
E2	1.535	1.935	0.060	0.076	
b	0.200	0.400	0.008	0.016	
e	0.550	0.750	0.022	0.030	
L	0.300	0.500	0.012	0.020	
L1	0.180	0.480	0.007	0.019	
L2	0~0.100		0~0.004		
L3	0~0.100		0~0.004		
Н	0.315	0.515	0.012	0.020	
θ	9°	13°	9°	13°	