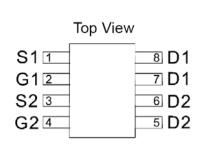
Dual N-Channel Power MOSFET

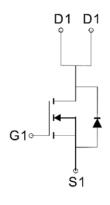
FEATURES

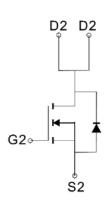
$$\begin{split} R_{DS(ON)} & \leq 16 m \quad @V_{GS} = 10V \\ R_{DS(ON)} & \leq 20 m \quad @V_{GS} = 4.5V \end{split}$$

Super high density cell design for extremely low $R_{\text{DS(ON)}}$ Exceptional on-resistance and maximum DC current capability

APPLICATIONS


Power Management in Note book
Portable Equipment
Battery Powered System
DC/DC Converter
Load Switch
DSC
LCD Display inverter


GENERAL DESCRIPTION


The FS4970 is the Dual N-Channel logic enhancement mode power field effect transistors are produced using high cell density, DMOS trench technology. This high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage application such as cellular phone and notebook computer power management and other battery powered circuits where high-side switching and low in-line power loss are needed in a very small outline surface mount package.

• PIN CONFIGURATION (SOP8)

FS -V1.0

Absolute Maximum Ratings (T_A=25°C unless otherwise noted)

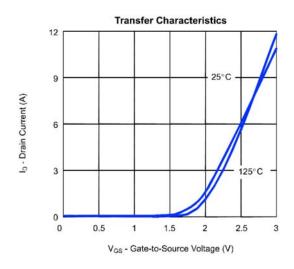
Parameter Drain-Source Voltage		Symbol	Maximum	Units	
		V _{DS}	30	V	
Gate-Source Voltage		V_{GS}	±20	V	
Continuous Drain Current	T _A =25°C		10	A	
	T _A =70°C	I _D	8.5		
Pulsed Drain Current ^C		I _{DM}	32	7	
Power Dissipation ^B	T _A =25°C		2	W	
Power Dissipation	T _A =70°C	P_D	1.5		
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	$^{\circ}$	

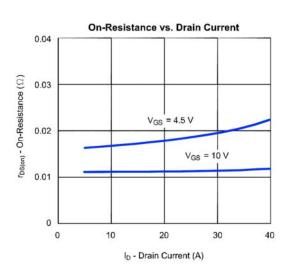
1/5

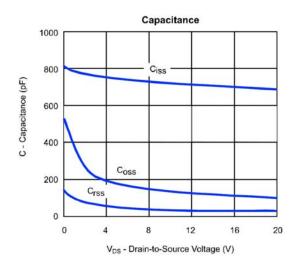
www.forsemi.com

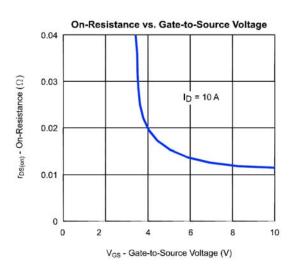
■ **Electrical Characteristics** (T_A=25°C unless otherwise noted)

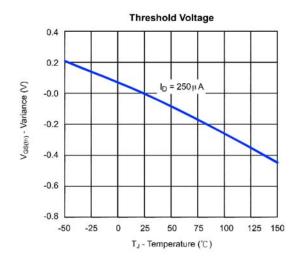
Symbol	Parameter	Conditions	Min	Тур	Max	Units			
STATIC PARAMETERS									
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250uA, V _{GS} =0V	30			V			
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =24V, V _{GS} =0V			1	uA			
I _{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±20V			± 0.1				
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =250uA	1	1.4	2	V			
R _{DS(ON)}	Obetic Design Courses On Designation	V _{GS} =10V, I _D =10A		13	16	mΩ			
	Static Drain-Source On-Resistance	V_{GS} =4.5V, I_D =8A		16.5	20				
V_{SD}	Diode Forward Voltage	I _S =2.3A,V _{GS} =0V		0.8	1.2	V			
DYNAMIC	PARAMETERS				l .				
C _{iss}	Input Capacitance			680		pF			
Coss	Output Capacitance	V _{GS} =0V, V _{DS} =10V, f=1MHz		120					
C _{rss}	Reverse Transfer Capacitance			32					
R _g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		1		Ω			
SWITCHI	NG PARAMETERS								
Qg	Total Gate Charge			9.5					
Q _{gs}	Gate Source Charge	V _{GS} =4.5V, V _{DS} =10V, I _D =8.2A		3.8					
Q_{gd}	Gate Drain Charge			3.2					
t _{D(on)}	Turn-On DelayTime			12		ns ns			
tr	Turn-On Rise Time	V _{DD} =15V, R _L =15Ω I _D =1A, V _{GEN} =10V		9					
$t_{\text{D(off)}}$	Turn-Off DelayTime	$R_G=6\Omega$		42					
t _f	Turn-Off Fall Time			5					

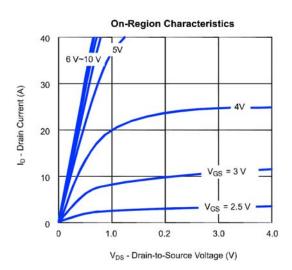

A. The value of $R_{\theta,JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.

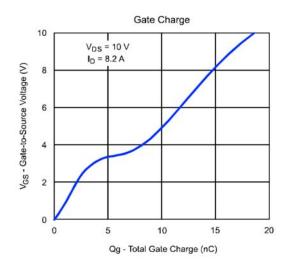

- B. The power dissipation P_D is based on T_{J(MAX)}=150°C, using≤10s junction-to-ambient thermal resistance.
- C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C. Ratings are based on low frequency and duty cycles to keep initial T_J =25°C.
- D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300us pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $T_{J(MAX)}$ =150°C. The SOA curve provides a single pulse rating.

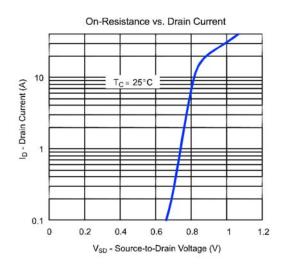

FS –V1.0 www.forsemi.com

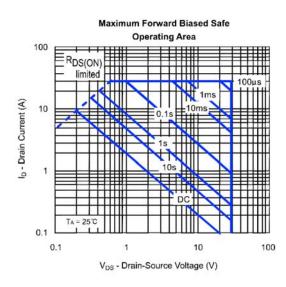


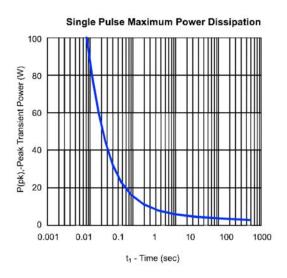

• TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

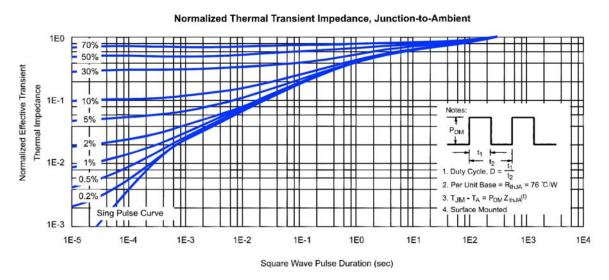


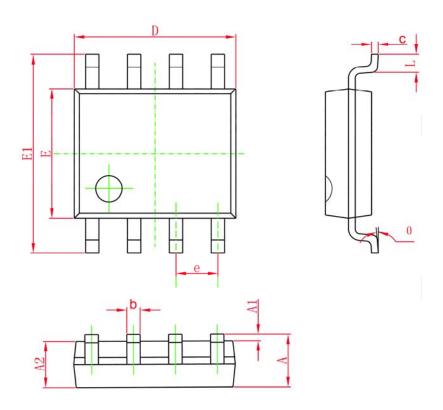



<u>3/5</u>


FS –V1.0 www.forsemi.com




• TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS



4/5

FS –V1.0 www.forsemi.com

Package Information

SOP8 PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
А	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
Е	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.270(BSC)		0.050(BSC)		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

5/5